Probability II: B. Math (Hons.) I
 Academic Year 2022-23, Second Semester Backpaper Exam
 Total Marks $=100 \quad$ Duration: 3 hours

- Show all your work and write explanations when needed. If you are using a result stated and/or proved in class, please quote it correctly.
- You are NOT allowed to use class notes, books, homework solutions, list of theorems, formulas etc.

1. Consider the following schematic diagram of a drainage network model (as described in class), where each of the five paths is open with probability $p=0.5$ and the paths behave independently of each other.

(a) (5 marks) Let X be the number of open paths and Y be the indicator that water can pass through the layer of quartzite to the layer of sandstone. Find the conditional probability mass function of X given $Y=1$.
(b) (5 marks) Compute $E(X \mid Y=1)$.
(c) $(5$ marks $)$ Compute $\operatorname{Var}(X \mid Y=1)$.

Please Turn Over

2. A continuous random vector (X, Y) has a joint probability density function given by

$$
f_{X, Y}(x, y)=c \quad \text { if } 0<x+y<2 \text { and } 0<x-y<2
$$

where c is a positive constant. Define $U:=(X+Y) / 2$ and $\quad V:=(X-Y) / 2$.
(a) (2 marks) Find c.
(b) (3 marks) Are X and Y independent? Please justify your answer.
(c) $(5+5=10$ marks $)$ Calculate the conditional probability density functions of X given Y and Y given X.
(d) (10 marks) Calculate a joint probability density function of U and V.
(e) (3 marks) Are U and V independent? Please justify your answer.
(f) (2 marks) Find the marginal distributions of U and V.
3. $((3+4)+8=15$ marks) Suppose $r(\geq 2)$ distinguishable umbrellas are distributed at random among $n(\geq 3)$ mathematicians. Let X be the number of mathematician(s) who get no umbrella and Y be the number of mathematician(s) who get exactly one umbrella. Compute $E(X)$ and $\operatorname{Var}(X)$. Show that

$$
\operatorname{Cov}(X, Y)=\frac{r(n-1)(n-2)^{r-1}}{n^{r-1}}-\frac{r(n-1)^{2 r-1}}{n^{2 r-2}}
$$

4. $(7+(4+4)=15$ marks) If $X \sim \operatorname{Poi}(\lambda)$ and $Y \sim \operatorname{Poi}(\mu)$ are independent, then find the conditional distribution of X given $X+Y$. In this case, compute $E(X \mid X+Y)$ and verify (by direct computation) that $E[E(X \mid X+Y)]=E(X)$.
5. Suppose X and Y are jointly normal (i.e., bivariate normal) with $E(X)=E(Y)=0$, $\operatorname{Var}(X)=\operatorname{Var}(Y)=1$ and $\operatorname{Cor}(X, Y)=\rho \in(-1,1)$.
(a) (4 marks) Show that $(X, Y)^{T} \stackrel{d}{=}\left(Z, \rho Z+\sqrt{1-\rho^{2}} W\right)^{T}$, where $Z, W \stackrel{i i d}{\sim} N(0,1)$.
(b) (4 marks) Using (a) or otherwise, state an algorithm to simulate the random vector $(X, Y)^{T}$ using $U, V \stackrel{i i d}{\sim} \operatorname{Unif}(0,1)$. Just state the method. No proof is required.
(c) (7 marks) Using (a) or otherwise, compute, with full justification, the correlation coefficient between X^{2} and Y^{2}.
6. (10 marks) Suppose $\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right) \sim \operatorname{Dir}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} ; \alpha_{6}\right)$ (the notation is as used in the class), where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{6}$ are strictly positive parameters. Compute, with full justification, a probability density function of $X_{1}+X_{2}+\cdots+X_{5}$.
